Exact Differential Equation Definition

A first-order differential equation M (x, y)dx + N(x, y)dy = 0 is an exact differential equation iff $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Example-1: The differential equation	Example-2: The differential equation
$(xy^2 + x)dx + yx^2dy = 0$ is exact	$(y^2 + 1)dx + xydy = 0$ is not exact
because $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} (xy^2 + x) = 2xy$	because $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(y^2 + 1) = 2y$
and $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} (yx^2) = 2xy$ are equal.	and $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(xy) = y$ are not equal.
Example-3: The differential equation	Example-4: The differential equation
$\cos y dx + (y^2 - x \sin y) dy = 0 \text{ is}$	$\cos y dx + (y^2 + x \sin y) dy = 0 \text{ is not}$
exact because $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(\cos y) = -\sin y$	exact because $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(\cos y) = -\sin y$
and $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(y^2 - x \sin y) = -\sin y$ are	and $\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(y^2 + x \sin y) = \sin y$ are
equal.	not equal.

Solution of exact DE

For the solution we have

(i) integrate M w. r. to x regarding y as constant

(ii) Find out those terms in N which are free from x and integrate them w.r.to y

(iii) Add the two expressions so obtained and equate the sum to an arbitrary constant This will give the general solution of the given exact DE.

The solution is $\int Mdx + \int_{\text{terms free from } x} Ndy = C$

Solving an Exact Differential Equation

Solve the differential equation $(2xy - 3x^2)dx + (x^2 - 2y)dy = 0$	The solution is $\int Mdx + \int_{\text{terms free }} Ndy = C$
Solution: Here	C C
$M = (2xy - 3x^2)$ and $N = (x^2 - 2y)$	$\Rightarrow \int (2xy - 3x^2) dx + \int (-2y) dy = C$
am a an	terms free
Then $\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2xy - 3x^2) = 2x$ and $\frac{\partial M}{\partial x} =$	$\begin{bmatrix} x^2 & x^3 \end{bmatrix} 2y^2$
$\frac{\partial}{\partial x}(x^2 - 2y) = 2x$ are equal.	$\Rightarrow \left 2y \frac{1}{2} - 3\frac{1}{3} \right - \frac{y}{2} = C$
0x · · · ·	\Rightarrow x ² y - x ³ - y ² = C

Exercise:

Determine whether the following differential equations is exacts if it is find its solution. (i) $(y^4 + 4x^3y + 3x)dx + (x^4 + 4xy^3 + y + 1)dy = 0$ (ii) $(x - 2e^{-y})dy + (y + xsin x)dx = 0$ (iii) $(2x^3 + 3y)dx + (3x + y - 1)dy = 0$ (iv) $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$